Digitalfire Ceramic Glossary

•The secret to cool bodies and glazes is alot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at
•The place to get the knowledge is

Sign-up at today.

Drying Crack

Successful drying of ceramic ware is more of a concept than a step-by-step. The needs vary with each type of ware, materials and production method.

When stresses are present within a drying ceramic item cracks can appear to relieve them. These stresses appear when a ceramic item does not dry evenly. If one part dries ahead of another it also shrinks ahead of the other. Thus when the latter part needs to shrink and dry a crack can appear to relieve the stress. Small drying cracks will normally grow during firing, especially if significant firing shrinkage occurs. Different types of clays (e.g. kaolin, ball clay, bentonite) have different characteristics (e.g. shrinkage rates, shrinkage curves, drying speed, ability to withstand the stress, dry strength, ability to terminate micro-cracks at pores and particles, etc). A common type of crack is called the 'S-crack', it is a signal that ware is being dried unevenly, contours are too angular, wall thickness too uneven, stress areas have surface imperfections that provide a place to start, or the type of clay being used is too plastic. Fast yet even drying will get better results than slow but uneven drying.


An example of an S-crack in the bottom of a fired porcelain mug

Its shape, growth during the firing and penetration of glaze down into the crack demonstrates it preexisted firing (happened during the drying).

A typical DFAC drying disk of an iron stoneware clay

The center portion was covered and so it lagged behind during drying, setting up stresses that caused the disk to crack. This test is such that most pottery clays will exhibit a crack. The severity of the crack becomes a way to compare drying performances. Notice the test also shows soluble salts concentrating around the outer perimeter, they migrated there from the center section because it was not exposed to the air.

Place mugs with handles at the center and cover them during drying

Handles expose all sides to the air and dry (and therefore shrink) much more quickly than the walls. Anything you can do to slow them down will produce a more even drying process.

Stonewares dry better than porcelains

The plastic porcelain has 6% drying shrinkage, the coarse stoneware has 7%. They dried side-by-side. The latter has no cracking, the former has some cracking on all handles or bases (the lower handle is completely separated from the base on this one). Why: The range of particle sizes in the stoneware impart green strength. The particles and pores also terminate micro-cracks.

Various grogs available in North America

Examples of various sized grogs from CE Minerals, Christy Minerals, Plainsman Clays. Grogs are added to clays, especially those used for sculpture, hand building and industrial products like brick and pipe (to improve drying properties). The grog reduces the drying shrinkage and individual particles terminate micro-cracks as they develop (larger grogs are more effective at the latter, smaller at the former). Grogs having a narrower range of particle sizes (vs. ones with a wide range of sizes) are often the most effective additions. Grogs having a thermal expansion close to that of the fired body, a low porosity, lighter color and minimal iron contamination are the most sought after (and the most expensive).

It shrinks much more yet cracks less. How is that possible?

Two mugs have dried. The clay on the left shrinks 7.5% on drying, the one on the right only 6%. Yet it consistently cracks less! Not the slightest hairline crack, not even at the handle joins. Why? Green or dry strength. If the dry clay matrix has the strength it can resist cracking even if there are stresses from uneven drying. The clay on the right is made using Kentucky ball clay, which has good plasticity but fairly low drying strength. The clay on the left is a native terra cotta, very plastic and very strong in the green state (likely double or triple the white clay). To demonstrate further: If paper fiber were added to the white clay, it would not crack. Why? Not because it would shrink less with the added fiber, no, the shrinkage would stay the same. Increased strength imparted by the fiber would give it the power to resist cracking.

It is not the speed of drying, but how even it is

Half of these Plaisman Polar Ice mugs cracked. But I know exactly why it happened! After throwing them I put them on a slowly rotating wheelhead in front of a fan to stiffen them enough so I could attach the handles quickly. Of course, I forgot them and they got quite stiff on the lip (while the bottom was still wet). I quickly attached the handles and then covered them with cloth and plastic and let them sit for two days to let them even out. Notwithstanding that, that early gradient sealed their destiny. The lesson: At no time in the drying process should any part of a piece be significantly ahead of another part.

How to dry these mugs evenly to avoid cracks

It is important that during all stages of drying gradients (sections of different stiffnesses) do not develop in pieces. Thus I like to attach handles as soon after throwing as possible. An unavoidable gradient develops anyway because the rims need to be stiff enough to attach the handles without going out of shape too much. Now how can I stiffen these mugs for trimming and even them out at the same time? The first key is to put them on a plaster bat (as I have done here). Then I cover them with a fabric (arnel fabric works well because it flows). Then I put the whole thing into a large garbage plastic bag folded underneath to seal it. The plaster stiffens the bases and absorbs moisture in the air to stiffen the walls also. The next day every part of the piece is an even leather hard.

Compression of the base is the key to avoiding S-cracks? Wrong.

This is an exchange I had on Facebook on this topic. Many people believe cracks are caused by high water content, high shrinkage clay, not compressing the base when throwing, throwing off the hump or stretching the clay excessively when throwing. But I break some or all of these rules every time I make mugs and have almost no cracks. Why? Because the reason pieces crack is unevenness in wall thickness and drying. And I make sure both are even.

This appears to be a drying crack, but it is not

This clay normally dries well, but not this time. Strangely, this crack is not at the handle join, it is penetrating into the mug wall. Actually, this is not a crack, it is a split. Excessive slip around the join was not removed, that is bad when a body has larger particles, they permit water left on the surface to penetrate inward and begin a split. An aggravating factor was that the handle was allowed to dry faster than the mug itself, pulling at this join and opening the split even more.

Strange drying crack on a porcelain mug

Drying crack on the inside of a mug at the handle join. Why?

Why do cracks across the base of ware form an S shape?

This cup is being force dried with a heat gun. The speed of the drying is not the problem. I can dry this mug in minutes as long as I apply the heat evenly to all surfaces. But in this case I have dried the side walls first and the base is far behind. The first surprise is where the crack starts: It is actually the meeting of two, they each start at the outside edge (that is where the stress encounters clay stiff enough to crack). Another surprise is when: Near the end of the process the cracks suddenly grow (these photos span only about a minute). The way it which the two cracks find each other at the center produces the characteristic S-crack.

Sixteen kinds of clay. No mugs have cracked in drying. Why?

The key is avoidance of methods that result in one part of the piece being stiffer at any stage of drying (not vinegar in the water, compressing the bottoms, etc.). Throw mugs with walls of even thickness. Put them on a plaster bat (it dewaters the base). Make the handles a while after you have made the mugs (they stiffen quicker). Apply them as soon as the rims are stiff enough to maintain shape (in my climate, two hours). Use a join method that enables application of lots of pressure (better than scoring). Use only enough slip (of thick cream consistency) to make the join (no excessive squirting out at the perimeter). Pack all the mugs closely on bats, rims up, cover with flowing cloth (e.g. arnel). Put them inside big bags or wrap plastic around and tuck it under. Trim the bases the next day (to the same thickness as the walls). Place rims down (with handles at the center) on smooth batts (not plaster) and cover them with large fabrics that can wrap under leaving no holes exposed to the outside air (in our dry climate two days dries them).

Same clay disk dried fast (heat gun) and slower (fan) for the DFAC test

The center portion was protected while the perimeter dried and shrank first (reshaping the central section). No cracks. But as the central area hardened it reached a point where it was stiff enough to impose forces that forced two cracks to start from the outer edge (opposite each other), these grew inward and found each other. Then the gap widened to dissipate more of the stresses (the width of this gap relates to the drying shrinkage of the clay). But the accelerated pace in the top disk left more stresses, they were relieved by the other hairline cracks from the outer edge, these happened at the very end.The lesson: The stage was set for cracking on both samples very early in the drying process. But the actual cracks occurred very late. Accelerating the process only created small extra edge cracks (on top disk).

Out Bound Links

By Tony Hansen

Feedback, Suggestions

Your email address


Your Name


Copyright 2003, 2008, 2015 https://, All Rights Reserved