Digitalfire Ceramic Glossary

•The secret to cool bodies and glazes is alot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at
•The place to get the knowledge is

Sign-up at today.

Devitrification, Crystallization

When ceramic melts are cooled they prefer to solidify as a glass. But given sufficient time and if the chemistry is right, they will solidify as a crystalline structure.

Crystals can grow in cooling glaze melts if one or more of the following conditions are present: the glaze melt is fluid, cooling rate is slow, oxides that like to form crystals are present (e.g. ZnO, TiO), oxides that can form crystals are present in high proportions (e.g. CaO), oxides that stiffen the melt are not present or present in low percentages (e.g. Al2O3, Zr, MgO). Crystals are normally silicate or borate compounds, thus SiO2 and B2O3 need to be present in significant amounts. Crystals can be seeded by incorporating them in a glaze batch. Glazes not normally prone to crystallization can sometimes be partially crystallized by slow cooling and glazes prone to crystallization can often be quickly cooled to prevent it.

Crystallization can be highly decorative but is difficult to maintain consistency and is only used in one-of-a-kind artware. Unwanted crystallization occurring in a glaze during cool-down in the firing is called devitrification, it spoils gloss surfaces and can be a real plague to industry. It can be dealt with by faster cooling, higher Al2O3, switching some CaO for MgO, reducing B2O3.

Very glossy or well-melted glazes can be subject to this because they likely either contain a lot of SiO2 (which combines with other oxides to form silicate crystals) or have a very fluid melt (which enables crystals greater freedom to form). When devitrification is desired it is simply called crystallization. The chemistry of the host glaze is the key factor since it determines the amount of melting and the presence of oxides that can impede crystallization (e.g. Al2O3, MgO). Many mattes are simply glossy glazes in which the entire surface has been invaded by micro-crystals. Purely decorative highly crystalline glazes are high in Na2O and thus almost always craze badly.

A dramatic example of crystallization can be demonstrated by melting (and cooling) a powdered mix of 50:50 Ferro frit 3134 and cobalt oxide in a crucible at cone 6. The frit is a very active melter (it contains no alumina) and the cobalt is also an active melter, together they can work real magic!


Variegating effect of sprayed-on layer of 100% titanium dioxide

The referred to surface is the outside of this large bowl. The base glaze (inside and out) is GA6-D Alberta Slip glaze fired at cone 6 on a buff stoneware. The thinness of the rutile needs to be controlled carefully, the only practical method to apply it is by spraying. The dramatical effect is a real testament to the variegating power of TiO2. An advantage of this technique is the source: Titanium dioxide instead of sourcing TiO2 from the often troublesome rutile.

Variegation and phase separation with about 5% rutile

The glaze is a dolomite matte fired to cone 10R. High fire reduction is among the best processes to exploit the variegating magic of rutile.

Cone 10R variegation and crystal magic

This is an example of crystallization in a high MgO matte. MgO normally stiffens the glaze melt forming non-crystal mattes but at cone 10R many cool things happen with metal oxides, even at low percentages. Dolomite and talc are the key MgO sources.

Crystallization of Rutile at cone 6 completely subdued? How?

These glazes are both 80% Alberta Slip, but the one on the right employs 20% Ferro Frit 3249 accelerate the melting (whereas the left one has 20% Frit 3134). Even though Frit 3249 is higher in boron and should melt better, its high MgO stiffens the glaze melt denying the mobility needed for the crystal growth.

Thin titanium band sprayed over cone 6 glazes demonstrates crystallization

The first is on GA6-A, the rest are on GA6-C (Alberta slip glazes). The last has been applied too thickly, the brown band is dry and blistered.

Crystalline and vitreous silica molecular structure

Several things are needed for high silica glazes to crystallize as they cool. First a sufficiently fluid melt in which molecules can be mobile enough to assume their preferred connections. Second, cooling slowly enough to give them time to do this. Third, the slow cooling needs to occur at the temperature at which this best happens. Silica is highly crystallizable, melts of pure silica must be cooled very quickly to prevent crystallization. But glazes containing melters and Al2O3 have many other molecules that disrupt the silicate hexagonal structure, these are much more resistant to crystallization.

What could make glazes grow these incredible crystals?

Closeup of a crystalline glaze by Fara Shimbo. Crystals of this type can grow very large (centimeters) in size. They grow because the chemistry of the glaze and the firing have been tuned to encourage them. This involves melts that are highly fluid (lots of fluxes) with added metal oxides and a catalyst. The fluxes are normally B2O3, K2O and Na2O (from frits), the catalyst is zinc oxide (alot of it). Because Al2O3 stiffens glaze melts preventing crystal growth, it is very low in these glazes (clays and feldspars supply Al2O3, so these glazes have almost none). The firing has a highly controlled cooling cycle involving rapid descents and holds (sometimes multiple cycles of these). Between the cycles there are sometimes slight rises. Each discontinuity in the cooling curve creates specific effects in the crystal growth. Thousands of potters worldwide have investigated the complexities of the chemistry, the firing and the infinite range of metal oxides additions.

Boron blue in low fire transparent glazes

This high boron cone 04 glaze is generating calcium-borate crystals during cool down (called boron-blue). This is a common problem and a reason to control the boron levels in transparent glazes; use just enough to melt it well. If a more melt fluidity is needed, decrease the percentage of CaO. For opaque glazes, this effect can actually enable the use of less opacifier.

Same glaze. One crystallizes and the other does not. Why?

This is cone 6 oxidation high iron (9%) high boron glossy glaze slow cooled (right) and free-fall cooled (left). Tthe iron silicate crystals invade the surface when they get the opportunity. That opportunity is time and the melt fluidity of the glaze. Each glaze has a temperature at which crystals form the best and that temperature can be quite a bit lower than you might expect (hundreds of degrees down from the firing cone). Many experimental firings are needed to best find and exploit it (or avoid slow-cooling through it).

How do metal oxides compare in their degrees of melting?

Metallic oxides with 50% Ferro frit 3134 in crucibles at cone 6ox. Chrome and rutile have not melted, copper and cobalt are extremely active melters. Cobalt and copper have crystallized during cooling, manganese has formed an iridescent glass.

Tin oxide stops crystallization in GA6-A Alberta Slip base glaze

Both of these mugs were soaked 15 minutes at cone 6 (2200F), then cooled at 100F per hour to 2100F and soaked for 30 minutes and then cooled at 200F/hour to 1500F. This firing schedule was done to eliminate glaze defects like pinholes and blisters. Normally the GA6-A glaze crystallizes (devitrifies) heavily with this type of firing, but an addition of 1% tin oxide to the one on the left has prevented this behavior.

Fast cooling vs. slow cooling Alberta Slip GA6-A transparent base

These two mugs have the Alberta Slip base cone 6 GA6-A glaze on the inside. The left one is cooled normally (kiln off at cone 6 after soak). For the mug on the right the kiln has been soaked for half an hour at 1800F on the way down. This was done to develop the rutile blue glaze on the outside, but during this period crystallization occurred on the inside. If you need to cool slow (for the Alberta Slip rutile blue) but would like the transparent liner, add 0.5-1% tin oxide to the GA6-A to impede crystal growth.

An example of how cobalt can precipitate in a fluid melt glaze at cone 6

This glaze has a significant amount of cobalt carbonate and during cooling the excess is precipitating out into pink crystals during cooling in the kiln. This effect is unwanted because in this case since it produces an unpleasant surface and color (the photo does not clearly show how pink it is). This problem can be fixed by a combination of cooling the kiln faster, increasing the Al2O3 content in the glaze (it stiffens the melt and prevents crystal growth) or firing lower.

The multitude of things iron oxide can do in reduction

Iron oxide is an amazing glaze addition in reduction. It produces celadons at low percentages, then progresses to a clear amber glass by 5%, then to an opaque brown at 7%, a tenmoku by 9% and finally metallic crystalline with increasingly large crystals past 13%. These samples were cooled naturally in a large reduction kiln, the crystallization mechanism would be much heavier if it were cooled more slowly.

An awesome iron crystal glaze recipe for cone 10R

This iron crystal glaze is Ravenscrag slip plus 10% iron oxide fired to cone 10R on a buff stoneware (Plainsman H550). Since Ravenscrag slip is a glaze-by-itself at cone 10, it is an ideal base from which to make a wide range of glazes. It has its own website at It was originally formulated using Digitalfire Insight software. The project built on the merits of a specific silty clay that was noted to couple very good suspension and drying properties with a low firing temperature. The process involved calculating what minerals needed to be added to it to produce the chemistry of a middle-of-the road silky cone 10 glaze; the product was Ravenscrag Slip.

Alberta Slip GA6-A cone 6 base glaze slow cooled

GA6-A Alberta Slip base glaze (80 Alberta Slip:20 Frit 3134) fired with Plainsman slow cool cone 6 firing schedule on Plainsman M390 iron red clay. If this is cooled at normal speed, it fires to a glossy clear amber glass with no crystals.

Toilet bowl glaze vs. variegated glaze (at cone 6)

Most artists and potters want some sort of visual variegation in their glazes. The mug on the right demonstrates several types. Opacity variation with thickness: The outer blue varies (breaks) to brown on the edges of contours where the glaze layer is thinner. Phase changes: The rutile blue color swirls within because of phase changes within the glass (zones of differing chemistry). Crystallization: The inside glaze is normally a clear amber transparent, but because these were slow cooling in the firing, iron in the glass has crystallized on the surface. Clay color: The mugs are made from a brown clay, the iron within it is bleeding into the blue and amplifying color change on thin sections.

The perfect storm to create boron-blue clouding at low fire

Two clear glazes fired in the same slow-cool kiln on the same body with the same thickness. Why is one suffering boron blue (1916Q) and the other is not? Chemistry and material sourcing. Boron blue crystals will grow when there is plenty of boron (and other power fluxes), alumina is low, adequate silica is available and cooling is slow enough to give them time to grow. In the glaze on the left B2O3 is higher, crystal-fighting Al2O3 and MgO levels are alot lower, KNaO fluxing is alot higher, it has more SiO2 and the cooling is slow. In addition, it is sourcing B2O3 from a frit making the boron even more available for crystal formation (the glaze on the right is G2931F, it sources its boron from Ulexite).

How much rutile can a glaze take before it becomes unstable?

The 80:20 base Alberta slip base becomes oatmeal when over saturated with rutile or titanium (left:6% rutile, 3% titanium; right:4% rutile, 2% titanium right). That oatmeal effect is actually the excess titanium crystallizing out of solution in the melt as the kiln cools. Although the visual effects can be interesting, the micro-crystalline surface is often susceptible to cutlery marking and leaching. This is because the crystals are not as stable or durable as the glass of the glaze.

A problem with fluid-melt glazes with metal oxide additions

Crystallization (also called devritrification). You can see the tiny crystals on the surface of this copper stained cone 6 glaze (G3806C). The preferred orientation of oxides in crystalline, especially when metal oxides are present. When kilns cool quickly there is simply no time for oxides in an average glaze to organize themselves and crystals do not grow. But if the glaze has a fluid melt and it cools slowly through the temperature at which the crystals like to form, they will.

Devitrification of a transparent glaze

This glaze consists of micro fine silica, calcined EP kaolin, Ferro Frit 3249 MgO frit, and Ferro Frit 3134. It has been ball milled for 1, 3, and 6 hours with these same results. Notice the crystallization that is occurring. This is likely a product of the MgO in the Frit 3249. This high boron frit introduces it in a far more mobile and fluid state than would talc or dolomite and MgO is a matting agent (by virtue of the micro crystallization it can produce). The fluid melt and the fine silica further enhance the effect.

Reduction high temperature iron crystal glaze

This is what about 10% iron and some titanium and rutile can do in a transparent base glaze with slow cooling at cone 10R on a refined porcelain.

Cone 10R Tenmoku Ron Roy cup walks a delicate balance

Each potter using Tenmoku has their own preferences about how the glaze should look. Ron clearly likes the iron crystals to develop well on the edges of contours. He has learned how to walk a delicate firing and recipe balance to achieve this effect. If the percentage of iron is too high, or the glaze is applied too thin, reduction is too heavy or the cooling too slow there will be too muchy crystallization. If the iron is too low, cooling is too fast or the glaze it too thick it will be a solid black. Additionally, this effect depends on a glaze having a fluid melt (the iron is a strong flux), if the glaze is too thick it will run downward during the firing.

A good matte glaze. A bad matte glaze.

A melt fluidity comparison between two cone 6 matte glazes. G2934 is an MgO saturated boron fluxed glaze that melts to the right degree, forms a good glass, has a low thermal expansion, resists leaching and does not cutlery mark. G2000 is a much-trafficked cone 6 recipe, it is fluxed by zinc to produce a surface mesh of micro-crystals that not only mattes but also opacifies the glaze. But it forms a poor glass, runs too much, cutlery marks badly, stains easily, crazes and is likely not food safe! The G2934 recipe is google-searchable and a good demonstration of how the high-MgO matte mechanism (from talc) creates a silky surface at cone 6 oxidation the same as it does at cone 10 reduction (from dolomite). However it does need a tin or zircon addition to be white.

Out Bound Links

In Bound Links

  • (Properties) Glaze Variegation

    In contrast to the typical homogeneous surfaces of...

  • (Properties) Glaze Crystallization

    Crystal glazes are normally evaluated on the recip...

  • (Glossary) Transparent Glazes

    A fully transparent glaze is simply one that does ...

  • (Glossary) Matte Glaze

    A glaze that is not glossy. Of course, unmelted gl...

  • (Glossary) Vitrification

    Vitrification is the solidification of a melt into...

  • (Glossary) Amorphous

    Without a regular structure. Amorphous minerals do...

  • (Glossary) Base Glaze

    A base glaze is one having no opacifiers, variegat...

  • (Glossary) Boron Blue

    Boron blue is the bluish haze or clouding in a tra...

By Tony Hansen

Feedback, Suggestions

Your email address


Your Name


Copyright 2003, 2008, 2015 https://, All Rights Reserved