•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

De-Airing Pugmill

Pugmills are often equipped with a vacuum pump and feature a chamber near the end of the barrel where the vacuum is applied to remove air (just before the auger that moves the material to the nozzle). The knives on the rotating shaft cut the clay within the chamber to expose as much surface as possible to the vacuum.

Prevailing knowledge and opinion is that deaired clay normally has better forming properties and produces a smoother fired surface than that prepared by other methods. This is especially true for bodies of lower plasticity or of certain formulations (e.g. high silt, high talc). However for most plastic terra cottas, stonewares and porcelains; slurrying, dewatering and wedging produce similar workability.

Traditions in many places are to age clay after pugging to improve plasticity. However on closer examination it becomes evident that the body has low plasticity, any increase is considered worth the effort. However for plastic bodies (e.g. those used on a potters wheel to make large ware), the clay is fine right out of the nozzle of the machine. Today, low plasticity is normally managed by a simple bentonite addition or substitution of kaolin for ball clay.

Pugmills can be a part of a larger body-making process or it can be the only one. Theoretically, the ideal is a slurry mixing process to thorough blend the materials and wet all particle surfaces (called blunging). The blunger then feeds a screening device that removes coarser particles. That in turn feeds a filter press that dewaters the slip. Flat filter cakes produced by the press are then fed into a premixer that re-blends the separated layers in the cakes. The premixer then feeds the pugmill and it finalizes mixing and de-airs and extrudes the material. However the more plastic the clay the less less practical are some of the steps in the above process. This is because highly plastic bodies do not screen well, they do not filter press well and they stick inside the premixer. If a de-airing pugmill has enough blades and they are angled for the best mixing possible (rather than speed), the dry material and water can be fed directly into the head of the pugmill chamber and it can do all of the steps by itself. For super plastic bodies there is not really another practical method.

Studio potters often use de-airing pugmills to re-pug incoming material and to reprocess production scrap. Very capable small pugmills are commonly available and potters highly value them.

The de-airing process improves the smoothness of the fired surface

These two close-ups of a fired cone 6 porcelain showing a big difference in surface smoothness. The deaired material on the right has a much smoother fired surface even though the non-deaired material on the left has been wedged much more. The transparent glaze does not hide the roughness.

A low fire talc body lacks plasticity when slip-mixed, but not when pugged

This clay was slurried in a mixer and then poured onto a plaster table for dewatering. During throwing it is splitting when stretched and peeling when cutting the base. Yet when this same clay is water-mixed and pugged in a vacuum de-airing pugmill it performs well. One might think that the slurry mixer would wet all the particle surfaces better than a pugmill, but it appears the energy that the latter is putting into the mix is needed to develop the plasticity when there is a high talc percentage in the recipe.

Studio pugmills have come a long way

The same pugmill (back and front). One is stainless steel. Potters claim that they can dump almost anything into these machines (even dry scrap) and as long as they add the right amount of water the devices will mix and vacuum extrude a finished slug. Considering how portable these are they are an amazing device. However, these are no match for a large industrial pugmill. In the quantity of material they can produce, but also in the quality. They have few or even no blades on the main shaft, only augers. They contain no or only a rudimentary shredder feeding the vacuum chamber and little dwell time in the both chambers.

The large pugmill used at Plainsman Clays

The machine is being cleaned in preparation for a porcelain run. The machine has been stripped down completely and all the casings and augers and other parts have been washed and dried separately. These must be installed (in the main chamber, the vacuum chamber and in the nose). Clean-downs like this are an indicator of the quality delivered by the production crew.

Deairing pugmill at Plainsman Clays

The machine has been reassembled after cleaning and is ready for startup. This pugmill is powerful and capable of injecting alot of energy into the material. Premixed powder and water are fed into the main mixing chamber by a screw conveyor at the far end. Dozens of blades on the rotating shaft inside cut and mix the material so that by the time it has reached half way in the main chamber all traces of powder are gone. At the end of the main chamber an auger delivers the materials to a venturi terminated by a shredder. This slices the material with dozens of tiny blades as it enters the vacuum chamber (yellow cover). This exposes as much surface as possible to the vacuum. Additional blades on the main shaft further mix the material and finally an auger compresses it and delivers it to the nose where a column is extruded for cutting to length and packaging.

By Tony Hansen

Feedback, Suggestions

Your email address


Your Name


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved