•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.


Although colorants are added to bodies, most people think of them as materials that transform a colorless transparent or opaque glaze into a colored glaze. Colorants can be raw metal oxides (e.g. iron oxide, chrome oxide), metal oxide containing materials (e.g. rutile) or man-made powders which are smelted from metal oxide and stabilizer mixes (stains). Potters and smaller companies often use raw colorants and color-containing raw materials whereas industrial manufacturers employ stains. Unlike stains which are prefired, the color of raw colorant powders often bear no resemblance to the color they will produce in a glaze. Raw metal oxide powders are often available as carbonates or oxides (other forms are typically available also, but they are not usually used in ceramics for solubility or others issues). Carbonate colors gas during firing as the carbonates decompose and volatilize. This can be a source of glaze defects when the gassing happens after the glaze has begun to melt (copper carbonate is known for this issue). Color-containing raw materials, like rutile, often vary in their chemistry and mineralogy and are the least reliable option for coloring glazes. Not all metal oxides produce color (e.g. tin, titanium, zircon), but they can affect existing color and stabilize it and opacify the glass.

In glazes, color is a matter of chemistry: The color produced depends on the oxide make-up of the host glaze and of the mix of colorants added. The same metal oxide can participate in many color systems. Some colorants produce the same color across a wide range of host glazes (e.g. cobalt), others are very sensitive to the presence or absence of specific helper or hostile oxides (e.g. chrome-tin combinations). Colors are the most vibrant in transparent glazes where there is depth (in opaque glazes they tend to produce pastel shades). Some colors are potent, 1% can produce a strong color. Others are weak and 10% or more may be needed.

Colorants affect fired properties of glazes like any other material (e.g. thermal expansion, melting temperature, gloss). For example, some are powerful fluxes, others are very refractory. However the specifics of how and the degree to which they affect the fired glass are not nearly as well known as for other common ceramic oxides. Generally technicians know how much of a colorant is needed to achieve the shade they want and they know what chemistry the host glaze needs to have to maximize the efficiency of the color (since colorants are the most expensive of all ceramic materials). Beyond that, it is common to not include the colorant when calculating the oxide chemistry of a glaze. People rationalize and control the fired properties of the colorless base glaze in terms of the chemistry while they rationalize the contribution of the colorants to that base at the recipe level.

Iron oxide is available in many colors. Here are three.

Iron oxide is available in many colors. Here are three.

How can there be so many colors? Because iron and oxygen can combine in many ways. In ceramics we know Fe2O3 as red iron and Fe3O4 as black iron (the latter being the more concentrated form). But would you believe there are 6 others (one is Fe13O19!). And four phases of Fe2O3. Plus more iron hydroxides (yellow iron is Fe(OH)3).

MgO can destroy the rutile blue variegation effect

MgO can destroy the rutile blue variegation effect

The rutile blue variegation effect is fragile. It needs the right melt fluidity, the right chemistry and the right cooling (during firing). This is Alberta Slip GA6C recipe on the right (normal), the glaze melt flows well due to a 20% addition of Ferro Frit 3134 (a very low melting glass). On the left Boraq has been used as the flux (it is a calcium borate and also melts low, but not as low as the frit). It also contains significant MgO. These two factors have destroyed the rutile blue effect!

How do metal oxides compare in their degrees of melting?

How do metal oxides compare in their degrees of melting?

Metallic oxides with 50% Ferro frit 3134 in crucibles at cone 6ox. Chrome and rutile have not melted, copper and cobalt are extremely active melters. Cobalt and copper have crystallized during cooling, manganese has formed an iridescent glass.

Cone 10 Reduction firing is the home of the most magic oxide in ceramics: iron

Cone 10 Reduction firing is the home of the most magic oxide in ceramics: iron

It is a powerful glaze flux, variegator and crystalizer, a colorant of many characters in bodies and glazes and a specking agent like no other. And it is safe and cheap!

Mason stains in a cone 6 clear base

Mason stains in a cone 6 clear base

These are Mason stains added to cone 6 G2926B clear liner base glaze. Notice that the chrome tin maroon 6006 does not develop as well as the G2916F glossy base recipe. The 6020 manganese alumina pink is also not developing. Caution is required with inclusion stains (like #6021), if they are rated to cone 8 they may already begin bubbling at cone 6 is some host glazes.

Chrome oxide powder

Chrome oxide powder

Maroon and white mug before and after firing: What a difference!

Maroon and white mug before and after firing: What a difference!

The outer glaze is Ravenscrag GR6-E Raspberry, the bright maroon color is a product of the surprising interaction between the 0.5% chrome oxide and 7.5% tin oxide present. That small amount of chrome is only enough to give the raw powder a slight greenish hue, hardly different than the clear liner. While this color mechanism appears to be effective, it is delicate. A maroon stain is actually a better choice. It would fire more consistent would be less hazardous to use. And the raw glaze will be the same color as the fired one!

Out Bound Links

  • (Glossary) Encapsulated Stains

    A special class of stains that enable bright and difficult-to-achieve colors in ceramic glazes. They are a recent development in glaze technology. Many companies that hesitated to use these stains in the past now use them in their biggest selling products. These stains can strongly pigment a glaz...

  • (Materials) Stain

    Ceramic Stains

  • (Glossary) Opacifier, Opacification

    A glaze additive that transforms an otherwise transparent glaze into an opaque one. Common opacifiers are tin oxide and zircon compounds. Opacifiers typically work by simply not dissolving into the melt, the white suspended particles thus reflect and scatter the light. Since they do not participate ...

In Bound Links

  • (Properties) Glaze Color

    Glaze color is a combination of chemistry between the colorant and host, firing process and the amount and nature of the colorant. It is possible to achieve very similar colors using very different sy...

  • (Glossary) Transparent Glazes

    A fully transparent glaze is simply one that does not have opacity. But there are degrees of transparency. For example, if a glaze is matte it will show the color of underlying body and decoration, but these will be muted (so it is actually translucent). Completely transparent glazes look like a gla...

  • (Glossary) Target Formula, Limit Formula

    The term 'limit formula' historically has typically referred to efforts to establish absolute ranges for mixtures of oxides that melt well at an intended temperature and are not in sufficient excess to cause defects. These formulas typically show ranges for each oxide commonly used in a specific gla...

By Tony Hansen

Feedback, Suggestions

Your email address


Your Name


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved