•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

Boron Frit

This term is very generic, referring of course to frits that contain boron. Unfortunately that is 80-90% of available frits! Boron frits may have 1% boron or 50% boron. Even though the boron in the frit is no longer in the borax form it is still customary to refer to such as "borax frits". Since many textbooks call for a generic borax frit in certain glaze recipes it can be very difficult to determine what frit to use. However many technicians agree that the common frit formula of Ferro 3134 is what is intended by the generic term 'borax frit'. This frit is not a glaze-by-itself like 3124 or 3195, it is intended to melt at a very low temperature and as a way to add borax without alumina.

Raw sources of boron (like Borax) are soluble and thus not suitable in glazes (which are suspensions of particles). There are some raw mineral sources, like Gerstley Borate, Colemanite and Ulexite. However these materials have various issues that must be tolerated to use them effectively, normally only potters are able to negotiate these.

Your boron glaze might melt alot earlier than you think

Your boron glaze might melt alot earlier than you think

The porcelain mug on the left is fired to cone 6 with G2926B clear glossy glaze. This recipe only contains 25% boron frit (0.33 molar of B2O3). Yet the mug on the right (the same clay and glaze) is only fired to cone 02 yet the same glaze is already well melted! What does this mean? Industry avoids high boron glazes (they consider 0.33 to be high boron) because this early melting behavior means gases cannot clear before the glaze starts to melt (causing surface defects). For this reason, fast fire glazes melt much later. Yet many middle temperature reactive glazes in use by potters have double the amount of B2O3 that this glaze has!

Do you know the purpose of these common Ferro frits?

Do you know the purpose of these common Ferro frits?

I used a binder to form 10 gram GBMF test balls and fired them at cone 08 (1700F). Frits melt really well, they do not gas and they have chemistries we cannot get from raw materials (similar ones to these are sold by other manufacturers). These contain boron (B2O3), it is magic, a low expansion super-melter. Frit 3124 (glossy) and 3195 (silky matte) are balanced-chemistry bases (just add 10-15% kaolin for a cone 04 glaze, or more silica+kaolin to go higher). Consider Frit 3110 a man-made low-Al2O3 super feldspar. Its high-sodium makes it high thermal expansion. It works in bodies and is great to incorporate into glazes that shiver. The high-MgO Frit 3249 (for the abrasives industry) has a very-low expansion, it is great for fixing crazing glazes. Frit 3134 is similar to 3124 but without Al2O3. Use it where the glaze does not need more Al2O3 (e.g. it already has enough clay). It is no accident that these are used by potters in North America, they complement each other well. The Gerstley Borate is a natural source of boron (with issues frits do not have).

Frits melt so much more evenly and trouble free

Frits melt so much more evenly and trouble free

These two specimens are the same terra cotta clay fired at the same temperature (cone 03) in the same kiln. The chemistry of the glazes is similar but the materials that supply that chemistry are different. The one on the left mixes 30% frit with five other materials, the one on the right mixes 90%+ frit with one other material. Ulexite is the main source of boron (the melter) in #1, it decomposes during firing expelling 30% of its weight as gases (mostly CO2). These create the bubbles. Each of its six materials has its own melting characteristics. While they interact during melting they do not mix to create a homogeneous glass, it contains phases (discontinuities) that mar the fired surface. In the fritted glaze all the particles soften and melt in unison and produce no gas. Notice that it has also interacted with the body, fluxing and darkening it and forming a better interface. And it has passed (and healed) most of the bubbles from the body.

Out Bound Links

  • (Glossary) Borate

    The term 'boron' refers to the oxide B2O3. 'Borate materials' thus contain B2O3, they source it to glass-building during melting in the kiln. Boron is actually the potter's friend (because of his electronic-controller-equipped kiln) while as the same time it can be a scourge in industry (because the...

  • (Materials) Ferro Frit 3134 - Leadless and low alumina high calcia borosilicate frit


In Bound Links

  • (Oxides) B2O3 - Boric Oxide
  • (Materials) Boron Frits - B2O3 containing frits

    Borax Frit

  • (Minerals) Borate Minerals

    The major borate minerals are Colemanite and Ulexite. The geology required for borates is found in very few places in the world (mainly southern California, Chile, Turkey, Argentina, Spain, Russia). B...

  • (Tests) MLRG - Frit Melting Range (C)
  • (Typecodes) 1: FRT - Frit
  • (Project) Frits

    The number of different frits in the world can be intimidating, there are thousands. However, unlike stains, their are a wide range of standard formulations that have been made for many years. We are ...

  • (Videos) Reducing the Firing Temperature of a Glaze From Cone 10 to 6

    A key lesson because it explains the difference between cone 10 and 6 glazes, demonstrates how to evaluate frits to choose the best one to source boron to a glaze, how to determine how much frit to ad...

  • (Videos) Fixing a Settling Glaze Slurry

    Change the recipe of a glaze to increase its clay content (and thereby improve its suspending properties) while maintaining the same chemistry (and therefore fired results). Transcript 1 Welco...

  • (Glossary) Base Glaze

    A base glaze is one having no opacifiers, variegators or colorants. Thus it should be transparent if glossy and translucent if matte. Developing or adapting a base glaze for your ware is a very important first step in developing a manufacturing process that produces good quality. In fact, from a qua...

  • (Materials) Ulexite - NaCaB5O9·8H2O - Sodium calcium borate

    Television Stone

  • (Materials) Gerstley Borate - Plastic Calcium Borate

    Colemanite, Calcium Borate, Borocalcite

  • (Materials) Colemanite - 2CaO.3B2O3.5H2O or CaB3O4(OH)3·H2O
  • (Glossary) Medium Temperature Glaze

    In functional ceramics this term generally refers to glazes that mature from cone 4 to 7. At these temperatures it is difficult to compound glazes that will melt well without the need for powerful melters like zinc and boron. Thus a medium temperature glaze contains mostly the same kinds of ingredie...

By Tony Hansen

Feedback, Suggestions

Your email address


Your Name


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved