Cone 03 Drop-and-Hold

Start temperature assumed: 75°F
Step Rate to Temp °C Rate
°F/hr
To °F Hold Accum
Time
100 60°C/hr to 115 108 240 60min 2:31 Drive out any remaining mechanical water
100 194°C/hr to 1010 350 1850   7:07 Optionally soak here 30 minutes to clear bubble clouds
100 60°C/hr to 1065 108 1950 5min 8:08 Slow this rise or extend hold if the kiln is very densely loaded
100 555°C/hr to 1010 999 1850 30min 8:44 Use this step if you need to heal blisters, clears more bubbles
*Rates are expressed as "Celcius/Fahrenheit degrees", temperatures as "Degrees celcius/fahrenheit"

The idea of this schedule is to heal bubbles that normally just percolate during soaks at top temperature. This schedule also adds an option to reduce clouding caused by high populations of micro bubbles. The reasoning for why this works is explained in the steps below.

You have to program this manually. See the link below on how.

-Step 1. Drying needs to be complete because the next step proceeds rapidly. Extend the soaking time if your ware is thick or heavy or the kiln is densely loaded. 240F, although above boiling point, is not enough to fracture ware, but needed to completely dry it.

-Step 2 climbs quickly, your kiln may or may not be able to maintain the rate. If it can, consider increasing it to 400F/hr. The optional soak is to even out the heat distribution in the ware and enable the micro-bubble clouds of escaping gases of decomposition to combine and escape before the final push to top temperature (with a lower bubble population during that push). If you just need to heal blisters, the soak part of this step is not needed.

-Step 3: The push to the final temperature. Include self-supporting cones 5, 6 and 7 frequently in firings to monitor the accuracy of your controller. Adjust the temperature of this step for each kiln you have.

- Step 4: Use this step if you need to heal blisters. Free-fall 100F and hold. The reason: The lower temperature imposes the melt viscosity sufficiently to overcome melt surface tension and burst the bubbles but still affords enough fluidity to heal them. You may need to customize tempertaure this for your kiln, ware and glazes. For example, if your glazes are more fluid and reactive, drop lower, perhaps 200F down (most boron glazes remain fluid down to even 1600F so experimentation may be needed). But do not go too low or the glaze could crystallize during the soak.

The advent of kiln controllers has made soak-and-rise and drop-and-soak schedules like this possible for even hobbyist, with them you can now fire defect-free surfaces on coarse grained bodies.

The difference: Firing schedule!

The difference: Firing schedule!

These are the same glaze, same thickness, Ulexite-based G2931B glaze, fired to cone 03 on a terra cotta body. The one on the right was fired from 1850F to 1950F at 100F/hr, then soaked 15 minutes and shut off. The problem is surface tension. Like soapy water, when this glaze reaches cone 03 the melt is quite fluid. Since there is decomposition happening within the body, gases being generated vent out through surface pores and blow bubbles. I could soak at cone 03 as long as I wanted and the bubbles would just sit there. The one on the left was fired to 100F below cone 03, soaked half an hour (to clear micro-bubble clouds), then at 108F/hr to cone 03 and soaked 30 minutes, then control-cooled at 108F/hr to 1500F. During this cool, at some point well below cone 03, the increasing viscosity of the melt becomes sufficient to overcome the surface tension and break the bubbles. If that point is not traversed too quickly, the glaze has a chance to smooth out (using whatever remaining fluidity the melt has). Ideally I should identify exactly where that is and soak there for a while.

More stain is not necessarily brighter in color

More stain is not necessarily brighter in color

These are cone 03 porcelains with G2931K clear glaze base plus Mason 6021 encapsulated stain (which is very expensive). The one on the left has 15% stain added. The one on the right is slightly less dense red but has only 10% stain plus 2% zircon (zircopax). Notice the zircon has smoothed the surface also, this is a known benefit of using it with encapsulated stains. The 2% addition is not enough to opacify, the color remains deep and translucent. But the surface is still not completely smooth and glassy as is the base transparent glaze on its own. This can be improved using a drop-and-hold firing schedule.


By Tony Hansen

•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.



Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved