•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

Where Do I Start?

Section: Glazes, Subsection: Introduction

Description

Break your addiction to online recipes that don't work. Get control. Learn why glazes fire as they do. Why each material is used. Some chemistry. How to create perfect dipping and drying properties. Be empowered. Adjust recipes with issues rather than sta

Article Text

Probably you are reading this because you are want to mix your own ceramic glazes. Either to save money. Or get better control. Or make better ware. Or be better able to deal with production problems.

There is a prevailing culture in pottery, hobby ceramics and even industry of getting by with the least knowledge possible. At one extreme people buy tiny, very expensive jars of glaze and paint them on. Trusting that these will fit their bodies (not craze or shiver) and fire on them the way the glossy ads show them to. At the other extreme they embark on mixing recipes found on Pinterest or Facebook, hoping they will somehow magically work. You may have realized by now that this site is dedicated to fighting these cultures (which we personify as "the glaze dragon"). It is time to understand glazes. Here are some suggestions.

Are you concerned about producing safe, non-leaching glazes?

It is about balance in the chemistry, not saturating it with heavy metals, about firing in the way appropriate for the recipe, about liner glazing. About knowing how to adjust. It’s not rocket science. It’s about not trusting anything with significant percentages of colorants (or things like barium carbonate, lithium carbonate), even commercial glazes, without doing simple leach testing. Just get started taking the new approaches mentioned here and you will become opinionated about leaching in no time!

Are you at a school, art center or club?

Are you at a factory?

Places to start

If you are going to make ceramic ware, put good glazes on it. Remember, a glaze is a lot more than one that just has a pleasing fired appearance. There is no one-glaze-that-works-for-everyone. We cater to people that want to start out right, or have been kicked around long enough that they are ready to learn why, they want to "understand". You will never likely get the glazes you really want until you formulate or adapt them yourself.

Dip-glazing vs. brush-on glazing: Which gives the more even surface?

Dip-glazing vs. brush-on glazing: Which gives the more even surface?

This is a clear glaze (G2931K) with 10% purple stain (Mason 6385). The mugs are cone 03 porcelain (Zero3). The mug on the left was dipped (at the bisque stage) into a slurry of the glaze (having an appropriate specific gravity and thixotropy). The glaze dried in seconds. The one on the right was painted on (two layers). Like any paint-on glaze, it contains 1% CMC Gum. Each layer required several minutes of application time and fifteen minutes of drying time.

Do you know the purpose of these common Ferro frits?

Do you know the purpose of these common Ferro frits?

I used a binder to form 10 gram balls and fired them at cone 08 (1700F). Frits melt really well, they do not gas and they have chemistries we cannot get from raw materials (similar ones to these are sold by other manufacturers). These contain boron (B2O3), it is magic, a low expansion super-melter. Frit 3124 (glossy) and 3195 (silky matte) are balanced-chemistry bases (just add 10-15% kaolin for a cone 04 glaze, or more silica+kaolin to go higher). Consider Frit 3110 a man-made low-Al2O3 super feldspar. Its high-sodium makes it high thermal expansion. It works in bodies and is great to incorporate into glazes that shiver. The high-MgO Frit 3249 (for the abrasives industry) has a very-low expansion, it is great for fixing crazing glazes. Frit 3134 is similar to 3124 but without Al2O3. Use it where the glaze does not need more Al2O3 (e.g. it already has enough clay). It is no accident that these are used by potters in North America, they complement each other well. The Gerstley Borate is a natural source of boron (with issues frits do not have).

Do your functional glazes do this? Fix them. Now.

Do your functional glazes do this? Fix them. Now.

These cone 6 porcelain mugs have glossy liner glazes and matte outers: VC71 (left) crazes, G2934 does not (it is highlighted using a felt marker and solvent). Crazing, while appropriate on non-functional ware, is unsanitary and severely weakens the ware (up to 300%). If your ware develops this your customers will bring it back for replacement. What will you do? The thermal expansion of VC71 is alot higher. It is a product of the chemistry (in this case, high sodium and low alumina). No change in firing will fix this, the body and glaze are not expansion compatible. Period. The fix: Change bodies and start all over. Use another glaze. Or, adjust this recipe to reduce its thermal expansion.

In pursuit of a reactive cone 6 base that I can live with

In pursuit of a reactive cone 6 base that I can live with

These melt-flow and ball-melt tests compare 6 unconventionally fluxed glazes with a traditional cone 6 moderately boron fluxed (+soda/calcia/magnesia) base (far left Plainsman G2926B). The objective is to achieve higher melt fluidity for a more brilliant surface and for more reactive response with colorant and variegator additions (with awareness of downsides of this). Classified by most active fluxes they are: G3814 - Moderate zinc, no boron G2938 - High-soda+lithia+strontium G3808 - High boron+soda (Gerstley Borate based) G3808A - 3808 chemistry sourced from frits G3813 - Boron+zinc+lithia G3806B - Soda+zinc+strontium+boron (mixed oxide effect) This series of tests was done to choose a recipe, that while more fluid, will have a minimum of the problems associated with such (e.g. crazing, blistering, excessive running, susceptibility to leaching). As a final step the recipe will be adjusted as needed. We eventually chose G3806B and further modified it to reduce the thermal expansion.

Better to mix your own glazes for production. Why?

Better to mix your own glazes for production. Why?

When you are doing production cost, quality and ease of use are so important. Right pail: 2 gallons of G2934 base with 10% Cerdec yellow stain. Cost: $135. Jars with the same amount: Almost $300! And you have to paint them on in three coats with drying in between. The one in the pail is a true dipping glaze. You can dip a bisque mug for 2 seconds and it dries immediately in a perfectly even layer (if mixed according to our instructions). What if you really needed a brushing version? This pail can be converted for pennies using CMC gum.

Brush-on commercial pottery glazes are perfect? Not quite!

Brush-on commercial pottery glazes are perfect? Not quite!

Paint-on glazes are great sometimes. But they are even greater if you know the recipe, then you can make more and make a dipping version for all the times when that is the better way to apply. Why is that better? Because you have a huge advantage over a glaze manufacturer: You already have clear glossy and matte base recipes that fit and work on your clay body. You can add the stains and opacifiers to these (with 1% gum to make them paintable) and make your own jars. Don't have base recipes??? Let's get started developing them with an account at insight-live.com (and the know-how you will find there)!

Common dipping glazes converted to jars of brushing glazes

Common dipping glazes converted to jars of brushing glazes

These are cone 6 Alberta Slip recipes that have been brushed onto the outsides of these mugs (three coats). Recipes are GA6C Rutile Blue on the outside of the left mug, GA6F Alberta Slip Oatmeal on the outside of the center mug and GA6F Oatmeal over G2926B black on the outside of the right mug). One-pint jars were made using 500g of glaze powder, 75g of Laguna CMC gum solution (equivalent to 1 gram gum per 100 glaze powder) and 280g of water. Using a good mixer you can produce a silky smooth slurry of 1.6 specific gravity, it works just like the commercial bottled glazes. The presence of the gum makes it unnecessary to calcine the Alberta Slip.

How to convert a dipping glaze to a brushing glaze

How to convert a dipping glaze to a brushing glaze

I have a jar of testing clear glaze that I mixed myself (10% yellow stain and 2% zircopax added to cone 03 G2931K clear). Commercial glaze producers make their lines of glazes like this. The cost of the dry materials: About $6. How can I convert it to a paintable glaze like the commercial ones? I made a spreadsheet where I can specify the weight of the plastic jar, the percentage of CMC gum powder needed and the concentration of the gum solution. I just need to weigh the jar of glaze (without lid), weigh a teaspoon of the liquid glaze (lower left), dry it (upper right) and weigh the dry (lower right). After filling in these numbers the sheet tells me what weight to evaporate the jar to and how much gum solution to mix in. It paints on just like a commercial glaze. But don't do this. I made another spreadsheet online (link below) based on starting from dry ingredients, adding the correct amount of water and gum solution. Of course, you need a good mixer to do this.

What could make glazes grow these incredible crystals?

What could make glazes grow these incredible crystals?

Closeup of a crystalline glaze by Fara Shimbo. Crystals of this type can grow very large (centimeters) in size. They grow because the chemistry of the glaze and the firing have been tuned to encourage them. This involves melts that are highly fluid (lots of fluxes) with added metal oxides and a catalyst. The fluxes are normally B2O3, K2O and Na2O (from frits), the catalyst is zinc oxide (alot of it). Because Al2O3 stiffens glaze melts preventing crystal growth, it is very low in these glazes (clays and feldspars supply Al2O3, so these glazes have almost none). The firing has a highly controlled cooling cycle involving rapid descents and holds (sometimes multiple cycles of these). Between the cycles there are sometimes slight rises. Each discontinuity in the cooling curve creates specific effects in the crystal growth. Thousands of potters worldwide have investigated the complexities of the chemistry, the firing and the infinite range of metal oxides additions.

Compare two glazes having different mechanisms for their matteness

Compare two glazes having different mechanisms for their matteness

These are two cone 6 matte glazes (shown side by side in an account at Insight-live). G1214Z is high calcium and a high silica:alumina ratio (you can find more about it by googling 1214Z). It crystallizes during cooling to make the matte effect and the degree of matteness is adjustable by trimming the silica content (but notice how much it runs). The G2928C has high MgO and it produces the classic silky matte by micro-wrinkling the surface, its matteness is adjustable by trimming the calcined kaolin. CaO is a standard oxide that is in almost all glazes, 0.4 is not high for it. But you would never normally see more than 0.3 of MgO in a cone 6 glaze (if you do it will likely be unstable). The G2928C also has 5% tin, if that was not there it would be darker than the other one because Ravenscrag Slip has a little iron. This was made by recalculating the Moore's Matte recipe to use as much Ravenscrag Slip as possible yet keep the overall chemistry the same. This glaze actually has texture like a dolomite matte at cone 10R, it is great. And it has wonderful application properties. And it does not craze, on Plainsman M370 (it even survived and 300F to ice water plunge without cracking). This looks like it could be a great liner glaze.

Cutlery marking is directly related to the chemistry of the glaze

Cutlery marking is directly related to the chemistry of the glaze

This is an example of cutlery marking in a cone 10 silky matte glaze lacking Al2O3, SiO2 and having too much MgO. Al2O3-deficient glazes often have high melt fluidity and run during firing, this freezes to a glass that lacks durability and hardness. But sufficient MgO levels can stabilize the melt and produce a glaze that appears stable but is not. Glazes need sufficient Al2O3 (and SiO2) to develop hardness and durability. Only after viewing the chemistry of this glaze did the cause for the marking become evident. This is an excellent demonstration of how imbalance in chemistry has real consequences. It is certainly possible to make a dolomite matte high temperature glaze that will not do this (G2571A is an example, it has lower MgO and higher Al2O3 and produces the same pleasant matte surface).

What can you do using glaze chemistry?

What can you do using glaze chemistry?

There is a direct relationship between the way ceramic glazes fire and their chemistry. Wrapping your mind around that and overcome your aversion to chemistry is a key to getting control of your glazes. You can fix problems like crazing, blistering, pinholing, settling, gelling, clouding, leaching, crawling, marking, scratching, powdering. Substitute frits or incorporate better, cheaper materials, replace no-longer-available ones (all while maintaining the same chemistry). Adjust melting temperature, gloss, surface character, color. Identify weaknesses in glazes to avoid problems. Create and optimize base glazes to work with difficult colors or stains and for special effects dependent on opacification, crystallization or variegation. Create glazes from scratch and use your own native materials in the highest possible percentage.

This leaching mug needs a liner glaze. Seriously!

This leaching mug needs a liner glaze. Seriously!

Three cone 6 commercial bottled glazes have been layered. The mug was filled with lemon juice over night. The white areas on the blue and rust areas on the brown have leached! Why? Glazes need high melt fluidity to produce reactive surfaces like this. While such are normally subject to leaching, the manufacturers were able to tune the chemistry of each to make them resistant. But the overlaps mingle well (because of the fluidity), they are new chemistries, less stable ones. What is leaching? Cobalt! Not good. What else? We do not know, these recipes are secret. It is much better to make your own transparent or white liner glaze. Not only can you pour-apply it and get very even coverage, but you know the recipe, have control, can adjust to fit your body.

A settling, running glaze recipe gets a makeover

A settling, running glaze recipe gets a makeover

The original cone 6 recipe, WCB, fires to a beautiful brilliant deep blue green (shown in column 2 of this Insight-live screen-shot). But it is crazing and settling badly in the bucket. The crazing is because of high KNaO (potassium and sodium from the high feldspar). The settling is because there is almost no clay. Adjustment 1 (column 3) eliminates the feldspar and sources Al2O3 from kaolin and KNaO from Frit 3110. The chemistry of the new chemistry is very close. To make that happen the amounts of other materials had to be juggled (you can click on any material to see what oxides it contributes). But the fired test reveals that this one, although very similar, is melting more (because the frit releases its oxide more readily than feldspar). Adjustment 2 (column 4) proposes a 10-part silica addition (to supply more SiO2). SiO2 is the glass former, the more a glaze will accept, the better. Silica is refractory so the glaze will run less. It will also fire more durable and be more resistant to leaching.

Out Bound Links

In Bound Links


By Tony Hansen




Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved