No tracking! No ads!
That's why this page loads quickly!

SignUp for Monthly Tech-Tip from Tony Hansen

A Low Cost Tester of Glaze Melt Fluidity
A One-speed Lab or Studio Slurry Mixer
A Textbook Cone 6 Matte Glaze With Problems
Adjusting Glaze Expansion by Calculation to Solve Shivering
Alberta Slip, 20 Years of Substitution for Albany Slip
An Overview of Ceramic Stains
Are You in Control of Your Production Process?
Are Your Glazes Food Safe or are They Leachable?
Attack on Glass: Corrosion Attack Mechanisms
Ball Milling Glazes, Bodies, Engobes
Binders for Ceramic Bodies
Bringing Out the Big Guns in Craze Control: MgO (G1215U)
Ceramic Glazes Today
Ceramic Material Nomenclature
Ceramic Tile Clay Body Formulation
Changing Our View of Glazes
Chemistry vs. Matrix Blending to Create Glazes from Native Materials
Concentrate on One Good Glaze
Cone 6 Floating Blue Glaze Recipe
Copper Red Glazes
Crazing and Bacteria: Is There a Hazard?
Crazing in Stoneware Glazes: Treating the Causes, Not the Symptoms
Creating a Non-Glaze Ceramic Slip or Engobe
Creating Your Own Budget Glaze
Crystal Glazes: Understanding the Process and Materials
Deflocculants: A Detailed Overview
Demonstrating Glaze Fit Issues to Students
Diagnosing a Casting Problem at a Sanitaryware Plant
Drying Ceramics Without Cracks
Duplicating Albany Slip
Duplicating AP Green Fireclay
Electric Hobby Kilns: What You Need to Know
Fighting the Glaze Dragon
Firing Clay Test Bars
Firing: What Happens to Ceramic Ware in a Firing Kiln
First You See It Then You Don't: Raku Glaze Stability
Fixing a glaze that does not stay in suspension
Formulating a Clear Glaze Compatible with Chrome-Tin Stains
Formulating a Porcelain
Formulating Ash and Native-Material Glazes
Formulating Your Own Clay Body
G1214M Cone 5-7 20x5 Glossy Base Glaze
G1214W Cone 6 Transparent Base Glaze
G1214Z Cone 6 Matte Base Glaze
G1916M Cone 06-04 Base Glaze
G1947U/G2571A Cone 10/10R Base Matte/Glossy Glazes
Getting the Glaze Color You Want: Working With Stains
Glaze and Body Pigments and Stains in the Ceramic Tile Industry
Glaze Chemistry Basics - Formula, Analysis, Mole%, Unity, LOI
Glaze chemistry using a frit of approximate analysis
Glaze Recipes: Formulate Your Own Instead
Glaze Types, Formulation and Application in the Tile Industry
Having Your Glaze Tested for Toxic Metal Release
High Gloss Glazes
How a Material Chemical Analysis is Done
How desktop INSIGHT Deals With Unity, LOI and Formula Weight
How to Find and Test Your Own Native Clays
How to Liner-Glaze a Mug
I've Always Done It This Way!
Inkjet Decoration of Ceramic Tiles
Interpreting Orton Cones
Is Your Fired Ware Safe?
Leaching Cone 6 Glaze Case Study
Limit Formulas and Target Formulas
Low Budget Testing of the Raw and Fired Properties of a Glaze
Low Fire White Talc Casting Body Recipe
Make Your Own Ball Mill Stand
Making Glaze Testing Cones
Monoporosa or Single Fired Wall Tiles
Organic Matter in Clays: Detailed Overview
Outdoor Weather Resistant Ceramics
Overview of Paper Clay
Painting Glazes Rather Than Dipping or Spraying
Particle Size Distribution of Ceramic Powders
Porcelain Tile, Vitrified or Granito Tile
Rationalizing Conflicting Opinions About Plasticity
Ravenscrag Slip is Born
Recylcing Scrap Clay
Reducing the Firing Temperature of a Glaze From Cone 10 to 6
Single Fire Glazing
Soluble Salts in Minerals: Detailed Overview
Some Keys to Dealing With Firing Cracks
Stoneware Casting Body Recipes
Substituting Cornwall Stone
Super-Refined Terra Sigillata
The Chemistry, Physics and Manufacturing of Glaze Frits
The Effect of Glaze Fit on Fired Ware Strength
The Four Levels on Which to View Ceramic Glazes
The Majolica Earthenware Process
The Physics of Clay Bodies
The Potter's Prayer
The Right Chemistry for a Cone 6 MgO Matte
The Trials of Being the Only Technical Person in the Club
The Whining Stops Here: A Realistic Look at Clay Bodies
Those Unlabelled Bags and Buckets
Tiles and Mosaics for Potters
Toxicity of Firebricks Used in Ovens
Trafficking in Glaze Recipes
Understanding Ceramic Materials
Understanding Ceramic Oxides
Understanding Glaze Slurry Properties
Understanding the Deflocculation Process in Slip Casting
Understanding the Terra Cotta Slip Casting Recipes In North America
Understanding Thermal Expansion in Ceramic Glazes
Unwanted Crystallization in a Cone 6 Glaze
Variegating Glazes
Volcanic Ash
What Determines a Glaze's Firing Temperature?
What is a Mole, Checking Out the Mole
What is the Glaze Dragon?
Where Do I Start?
Why Textbook Glazes Are So Difficult

Interpreting Orton Cones


Interpreting how high a kiln fired based on the look of the cones can be a much more complicated matter than it might first appear.


At first it seemed simple: The cone bends and the firing is done. I regarded that little cone as the one thing that was straight forward, fool proof. I could just stick them into a blob of clay without being overly concerned about different depths and angles, throw them in the kiln, and they bent over time after time. Soon, however, I had to wonder. My firings were not consistent! I blamed the clay, the glaze, the weather; everything but the way I used the cones. Well, it turns out there were instructions I failed to read. Yes, there is a lot more to using and interpreting these devices than you might have thought.

Hermann Seger studied the melt dynamics of oxide compounds and made the first cones to guide him in firing. Edward Orton followed and laid the ground work for the cones we use today. Shown here is a fragment of an Orton cone chart. As you can see, the cones bend at different temperatures according to rate of temperature rise. Hence, rather than measuring temperature, cones quantify the combined effects of time and temperature (their correct use, of course, depends on a slow enough rate of rise that the kiln fires evenly and all ware is permeated by the heat).

While this sounds like the ideal measuring system for firing ceramics in periodic kilns, in my case many things happened which began to muddy the water a bit. First, as already mentioned I needed to be able to interpret a cone to derive a number that could be recorded with shrinkage and absorption data. As a result there were questions to answer. For example, at what point in a cone's fall do you judge it to be complete? At what point is it half-complete. I made an arbitrary decision that when the tip touches it is complete, the expected heat input is achieved. Thus, I record cone 6 just touching as "6.0".

Orton Cone Chart  (Partial)
       ----Temp. Increase Per Hour-----
Cone   ---Large Cones----   ---Small Cones-----
Number 60C   108F    150C   270F    300C   540F  Color
020    625   1157    635    1175    666    1231  Dull Red
018    696   1285    717    1323    752    1386
016    764   1407    792    1458    825    1517
014    834   1533    838    1540    870    1598
012    866   1591    884    1623    900    1652
010    887   1629    894    1641    919    1686
08     945   1733    955    1751    983    1801  Orange
06     991   1816    999    1830   1023    1873
04    1050   1922   1060    1940   1098    2008
03    1086   1987   1101    2014   1131    2068
02    1101   2014   1120    2048   1148    2098  Yellow
01    1117   2043   1137    2079   1178    2152
1     1136   2077   1154    2109   1179    2154
2     1142   2088   1162    2124   1179    2154
3     1152   2106   1168    2134   1196    2185
4     1168   2134   1186    2167   1209    2208
5     1177   2151   1196    2185   1221    2230
6     1201   2194   1222    2232   1255    2291
7     1215   2219   1240    2264   1264    2307
8     1236   2257   1263    2305   1300    2372
9     1260   2300   1280    2336   1317    2403
10    1285   2345   1305    2381   1330    2426
11    1294   2361   1315    2399   1336    2437  White
12    1306   2383   1326    2419   1355    2471
*Note that Orton changes the formulations on some cones from time to time and these numbers can vary.

A booklet from the Edward Orton Jr. Ceramic Foundation that details the pyrotechnical theories of how cones operate. It set me straight on the value of cone plaques (setters) and self supporting cones. The book cited the amount of variation possible when cones are improperly set and contained several other revelations. For example, it had a small diagram which parallels cone-bend to degrees of temperature increase. This diagram showed that by the time a cone reaches three o'clock (3:00), it has travelled through 80% of the temperature range from start-of-bend to touching down. This meant that a cone 6 at 3:00 should be interpreted as 5.8. At 1:00, it is already 50% complete, that would be 5.5. Thus it is clear that a cone is most sensitive and best readable when it nears the end of its travel.

But now new questions became obvious: Does the fall of all cones span the same number of degrees? If a cone falls over a 30 degree range, how much does this overlap with adjacent cones. This is relevant because Orton highly recommends the use of a set of three cones (guide, guard, and firing) in each firing. The first signals when the firing is nearing completion and the last warns of over firing. In addition three will provide information that will make looking at one cone seem a bit like wearing blinders.

[conenorm.gif||] Consider the first set of cones shown here. The cone 6 is at 3:00, so I interpret that as cone 5.8. The cone 5 is well melted and the cone 7 is not started. This is a textbook situation which presents no difficulty. [coneslow.gif||]

Now look at the second set of cones here. Like the first set, the cone 6 is at 3:00, so I read it as 5.8. However, this time the cone 5 is not touching, so on its merits only I would assign the firing a value of 5.0. The cone 7 is at 2:00 which I would read as 6.7. So did I get cone 5.0, 5.8, or 6.7? To answer this, the booklet from Orton said the 'deformation of the guard cone means that heat treatment has been exceeded'. I called the Orton office, and they confirmed I should go by the highest cone to show deformation. Okay, that means I had 6.7.

But this is still somewhat disturbing. If I would have shut off the kiln when the cone 7 started to bend then the cone 6 would have been at 1:00, which is only 5.5, which is under fired. There appears to be no way to achieve a cone 6 firing!. Further, the logical explanation is that a slow firing should deform all three cones and a fast one should put the first cone down before the second even starts. However, this explanation is not adequate in my experience. The strength of cones is supposed to be their ability to measure heat work, so they should be most useful when firing speed varies.

I called Orton again and they sent charts and testing data on cones 5, 6, and 7. It was very intimidating information, to say the least. All of a sudden cones were not looking so simple; so I went to plan B.

I got a supply of Buller's rings. These ceramic devices are precision dust pressed and designed to shrink in a linear fashion with temperature increase. The advantage of rings is that one device works across a wide temperature range and expresses a discrete number representing the degree of firing. The disadvantage is that you can't tell when to shut the kiln off. So cones tell you the shut off time, rings tell you what heat-work you achieved at shut off. I began to put these into firings each day beside the set of cones and recorded the value measured with a device intended for this purpose (see diagram). For example, cone 10 yields a Buller's ring value of 40 on the scale. Cone 6 produces values from 27 to 29. One can thus conclude that even with a combination of rings and cones, we again are faced with device limitations and must apply skill and experience to achieve consistent results.

In recent years, it appears that more and more potters and small plant operators are employing electronic kiln controllers. The main ceramic industry likewise, long ago adopted these devices in the pursuit of repeatable firings. As one might suspect, electronic controllers also have their own set of surprises and trade-offs. Although it is not obvious, using a kiln controller takes us back to simple measurement of temperature. While a potter will say that his kiln fires to cone 6, a company technician will say his ware fires at 1200°C. Industry likes to have numbers for testing records and leave little to interpretation or chance.

Continuous industrial kilns maintain a constant temperature in the middle of a long tunnel, and the speed of the ware cars or conveyor through the kiln determines the firing curve each piece is subjected to. In this situation, the maintenance of a specific temperature is critical and this is easily done with high-tech hardware. Since thermocouples (the critical sensing element of industrial temperature control systems) measure only temperature, industry has little choice but to think in terms of temperature and be careful to maintain its measurement systems. In my experience, while cones can be used to determine the end point of a firing, the temperature based system seems to work very well also. If you have access to electronic controllers I recommend you go that route and use cones where they really shine: to verify the accuracy of the thermocouple, determine the degree of uniformity within the whole kiln, and act as a backup.

If you must continue with cones, you are advised to follow the manufacturers instructions (set three cones in each firing and set them properly). Self-supporting cones and cone setters are so convenient, you will kick yourself for not having used them sooner. Continue to fire to the center cone and when you examine the cones interpret the center one first, then look at the others and let them temper your initial interpretation to come up with a number that is a reasonable representation of the firing. If you can possibly build a database of cone interpretations and corresponding Buller's ring measures, you can use this additional information to further temper your judgment.

One more note: You can download software from the Resources section of the Orton website to calculate the temperature and bend angle for all cones. It is a useful tool for intrepreting cones distributed throughout the kiln.

Related Information

Bullers ring vs. cones for measuring kiln temperature

Veritas kiln temperature bullers ring measuring device

This is a Veritas measuring device. It was used to measure the size of Bullers rings. The system was set up so that an unfired ring would measure close to zero (the difference from zero was added or subtracted from the final measure). These rings provided a measure of what temperature the kiln was (as opposed to cones which say what it is). Actually, many companies placed many rings in a firing and extracted them, one-at-a-time (using a metal rod), cooled them quickly and measured them; this gave an accurate indication of the current temperature. Some companies still use these today to verify electronic measuring devices. The Orton TempCHEK system is based on this same principles, but is much more refined (and much more accurate).

What position should the cone be for correct firing?

Two orton cones, one bent to 6 oclock, the other 4 oclock.

Four o'clock. These are self-supporting cones, use these. I was consistently getting the cone on the left using a custom-programmed firing schedule to 2204F (for cone 6 with ten minute hold). However Orton recommends that the tip of the self supporting cone should be even with the top of the base, not the bottom. So I adjusted the program to finish at 2200F and got the cone on the right. But note: This applies to that kiln with that pyrometer, our other test kiln puts cone 6 at 4 o'clock at 2195F. Of course, if you want the kiln to hold at cone 6 for longer the cone will bend further, so the top temperature would need to be reduced to compensate for that. If you are using the automatic programs (e.g. cone 6 schedules go to around 2230!) your kiln is almost certainly over firing.


Glossary Bloating
When clay materials and bodies bubble as they melt or over fire. This normally happens in raw materials that contain particulates that produce gases during firing.
Glossary Cone
Devices that melt and bend in a ceramic kiln at specific temperatures when subjected to specific up ramps. Today, cones are used to calibrate controllers.
Projects Firing Schedules
Pyrometric cone at wikipedia
Orton Ceramic Website

By Tony Hansen

Tell Us How to Improve This Page

Or ask a question and we will alter this page to better answer it.

Email Address




CAPTCHA, All Rights Reserved
Privacy Policy