Ceramic Materials

Logged in as Logout

•The secret to cool bodies and glazes is alot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at SECUREURL.
•The place to get the knowledge is http://digitalfire.com

Sign-up at SECUREURL today.

Strontium Carbonate

Formula: SrCO3 or SrO.CO2
Alternate Names: Strontianite

Oxide Weight103.60
Formula Weight147.58
Enter the formula and formula weight directly into the Insight MDT dialog (since it records materials as formulas).
Enter the analysis into an Insight recipe and enter the LOI using Override Calculated LOI (in the Calc menu). It will calculate the formula.
DENS - Density (Specific Gravity) 3.6
HMOH - Hardness (Moh) 3.6
GSPT - Softening Point 723C D
BDLB - Bulk Density lbs/cu. ft. (Packed) 105

Strontium Carbonate is a very slightly soluble source of SrO used in glazes.

There is disagreement about when it decomposes (data sheets vary from 1075-1100C, one even indicates 1340C) as follows:

SrCO3 -> SrO + CO2

The 'Ceramic Industry Materials Handbook' states that it starts to disassociate as early as 800C in a purely oxidizing atmosphere, whereas a CO2 atmosphere might delay break-down until around 1220C. This information is supported by the fact that when the more stable calcium and barium carbonate are added to bodies, pinholing and blistering are greater than bodies containing strontium. Wikipedia says it melts and decomposes at the same time, 1100C.

Strontium carbonate is often recommended as a substitute for barium to produce matte glazes. Use about 75% as much and test first to make sure color response is the same. However strontium is not a substitute for barium as a precipitator of soluble salts in clay bodies because it combines with SO4-- ions in the water to form a compound that is not nearly as insoluble as BaSO4.

Viscous zirconium silicate glazes can be smoothed with the addition of strontium carbonate.

Strontium is considered a safe material. Some people confuse SrO with Strontium 90, an isotope released from atomic reactions; they are not the same thing.

As noted, strontium carbonate produces gases as it decomposes and these can cause pinholes or blisters in glazes. There are many strontium frits available and incorporating one of them to source the SrO instead of raw strontium carbonate is a classic application of glaze chemistry calculations. The resultant glaze will be more fusible and will have better clarity and fewer defects. Strontium frits have become much more common of late and are useful to producing brilliant transparent glazes without having a high expansion (like those based on Na2O and K2O). Please read the information about the oxide SrO to fully appreciate the value of SrO frits, not just as alternatives to this material, but as excellent ways to produce brilliant glazes.

Some pottery glazes have such high strontium carbonate percentages that a frit cannot supply the needed SrO. These are, of course, special purpose formulations, having an SrO content that exceeds (or far exceeds) normal target or limit formulas. According to the Wikipedia article, while it does have a low solubility, this increases dramatically with temperature (about 50 times greater at 100C verses room temperature) and up to 100 times greater in the presence of CO2 in the slurry. Both of these factors play in glaze slurries (they can contain other carbonates that are disassociating) and thus indicate the potential to flocculate or deflocculate them.


Strontium carbonate self destructing

Strontium carbonate fired at 1800F and then allowed to rehydrate in the air for two days. It is crumbling like this all by itself, similar to what calcium carbonate does as it rehdrates.

Cone 6 porcelain marbled and thrown

These bowls are made from a mixture of white and stained New-Zealand-kaolin-based porcelain (Plainsman Polar Ice) fired at cone 6. The body is not only white, but very translucent.The clear glaze is G2916F clear, it uses a Fusion strontium frit.

LOI profiles of more common glaze and body materials

These are pure samples (with 2% binder added) of (top left to bottom right) strontium carbonate, nepheline syenite, cobalt carbonate, manganese dioxide, bentonite (in bowl), 6 Tile kaolin, New Zealand kaolin and copper carbonate. I am firing them at 50F increments from 1500F and weighing to calculate loss on ignition for each. I want to find out at what temperature they are gassing (and potentially bubble-disrupting the glaze they are in or under). Notice how the copper is fuming and spitting black specks on the shelf, this happens right around 1500F. These stains on the shelf darkened considerably when the kiln was fired higher.

Orange-peel or pebbly glaze surface. Why?

This is a cone 10 glossy glaze. It should be crystal clear and smooth. But it contains strontium carbonate, talc and calcium carbonate. They produce gases as they decompose, if that gas needs to come out at the wrong time it turns the glaze into a Swiss cheeze of micro bubbles. One solution is to use non-gassing sources of MgO, SrO and CaO. Or, better, do a study to isolate which of these three materials is the problem and it might be possible to adjust the firing to accommodate it. Or, an adjustment could be make to the chemistry of the glaze such that the melting happened later and more vigorously (rather than earlier and more slowly). The latter is actually the likely cause, this glaze contains a small amount of boron frit. Boron melts very early so the glaze is likely already fluid while gases that normally escape before other cone 10 glazes even get started melting are being trapped by this one.

Out Bound Links

In Bound Links

By Tony Hansen

XML for Import into INSIGHT

<?xml version="1.0" encoding="UTF-8"?> <material name="Strontium Carbonate" descrip="" searchkey="Strontianite" loi="0.00" casnumber="1633-05-2"> <oxides> <oxide symbol="SrO" name="Strontium Oxide, Strontia" status="U" percent="70.200" tolerance=""/> </oxides> <volatiles> <volatile symbol="CO2" name="Carbon Dioxide" percent="29.800" tolerance=""/> </volatiles> </material>

Feedback, Suggestions

Your email address


Your Name


Copyright 2003, 2008 http://digitalfire.com, All Rights Reserved