Digitalfire Ceramic Materials Database

Logged in as Level 2 access: Logout


You should always be testing. But it is wasted without an audit trail. Document your lifetime of recipes, firing schedules, test results, pictures and much more in a private account at insight-live.com. It is the future, the next step after desktop Digitalfire Insight.

Watch the video, learn more or sign-up at http://insight-live.com.

Bone Ash

Formula: Ca5(OH)(PO4)3
Alternate Names: Calcium Phosphate

OxideAnalysisFormula
CaO55.82%1.000
P2O542.39%0.300
H2O1.79
Oxide Weight98.70
Formula Weight100.50
Enter the formula and formula weight directly into the Insight MDT dialog (since it records materials as formulas).
Enter the analysis into an Insight recipe and enter the LOI using Override Calculated LOI (in the Calc menu). It will calculate the formula.
DENS - Density (Specific Gravity) 3.10
MLPT - Melting Point (MP) 1670C

Bone ash is TriCalcium Phosphate in the form of Hydroxyapatite Ca5(OH)(PO4)3. This reacts when making bone china to give Anorthite (CaAl2Si2O8) and Ca3(PO4)2.

2*Ca5(OH)(PO4)3 --> 3*Ca3(PO4)2 + Ca(OH)2

Real bone ash is obtained by calcining bone up to approximately 1100°C and then cooling and milling. This material is still manufactured today since some of its important properties are due to the unique cellular structure of bones that is preserved through calcination. Real bone ash has excellent non-wetting properties, it is chemically inert and free of organic matters and has very high heat transfer resistance.

Bone ash has traditionally been added to porcelain to achieve a high degree of translucency (thus the name 'bone china'). The manufacture of bone china is difficult to master because the clays are non-plastic, ware is unstable in the kiln, and it is difficult to burn consistently to the body's narrow firing range. Today the availability of super-white kaolins, low iron feldspars and processed bentonites, smectites and hectorites makes it possible for almost anyone to make very white, translucent and strong porcelains even at cone 6.

Bone ash is not common in glazes. When employed it can cause the slurry to flocculate and thicken (and produce a very thick layer on the ware surface which cracks during drying). People often react to this by adding more water, producing a glaze that shrinks even more on drying and eventually thickens again. A better way is to add a little deflocculant to the glaze slurry (like Darvan).

Up to 1-2% bone ash can be used in enamels for opacification (more will usually cause pinholes). In glazes, as with enamels, too much or too high a temperature will cause blistering. In this use the phosphorus' influence toward a stiff melt generally checks the fluxing action of the calcia.

Bone ash or calcium phosphate are used to opacify opal glass (1-3%) because the P2O5 content forms colorless compounds with iron impurities.


Mechanisms

Out Bound Links

In Bound Links


Pictures

The whitest test bar here is a New-Zealand-kaolin-based cone 6 porcelain (employs VeeGum for plasticity). Immediately to the left of it are three North American-koalin-based bodies using standard bentonites. To the right of it is a Grolleg-based body at cone 11. All are plastic.

These are two cone 6 transparent glazed porcelain mugs with a light bulb inside. On the left is the porcelainous Plainsman M370 (Laguna BMix 6 would have similar opacity). Right is a zero-porosity New Zealand kaolin based porcelain called Polar Ice (from Plainsmanclays.com also)! The secret to making a plastic porcelain this white and translucent is not just the NZ kaolin, but the use of a very expensive plasticizer, VeeGum T, to enable maximizing the feldspar to get the fired maturity.


By Tony Hansen

XML for Import into INSIGHT

<?xml version="1.0" encoding="UTF-8"?> <material name="Bone Ash" descrip="" searchkey="Calcium Phosphate" loi="0.00" casnumber="68439-86-1"> <oxides> <oxide symbol="CaO" name="Calcium Oxide, Calcia" status="U" percent="55.820" tolerance=""/> <oxide symbol="P2O5" name="Phosphorus Pentoxide" status="" percent="42.390" tolerance=""/> </oxides> <volatiles> <volatile symbol="H2O" name="Water" percent="1.790" tolerance=""/> </volatiles> </material>


Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008 http://digitalfire.com, All Rights Reserved
Get a free INSIGHT software trial

INSIGHT is ceramic chemistry
calculation software that runs on
Windows, Mac and Linux and talks
to this web site. ()