Digitalfire Ceramic Glossary

Logged in as Logout

•The secret to cool bodies and glazes is alot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at SECUREURL.
•The place to get the knowledge is

Sign-up at SECUREURL today.

Celadon Glaze

A green or blue-green reduction fired glaze that has been stained using iron oxide. Celadons were first developed by the ancient Chinese. The celadons that potters are accustomed to firing today are glossy transparent whereas the ancient versions were more waxy and opaque. Thus there is dispute among practitioners and purists about what exactly a celadon really should be or what glaze can truly be labelled 'Celadons'. There are many books and webpages on the subject.

Typically celadon glazes are employed on porcelain but can also be used effectively on stonewares. Modern Celadons usually possess their high gloss because of high amounts of sodium and potassium, these oxides also cause the crazing often seen. However this problem can be solved by substituting some of the Na2O with lower expansion MgO or CaO and increasing the SiO2 (using ceramic chemistry calculations of course). Celadons have traditionally been fired at cone 10 but lower temperatures are possible with the addition of more flux (e.g. Gerstley Borate).

Blue celadons typically have high sodium/potassium, high silica, not too much iron, and low titanium (Grolleg kaolin is a good option to minimize the TiO2). Some claim that a little tin oxide and/or barium carbonate will help with the blue color. Some people are investigating creating celadons for cone 6 oxidation using stains to impart the color.


Celadon cone 10R glaze (about 3.5% iron oxide) on a buff firing reduction stoneware with G1947U transparent liner glaze

A down side of high feldspar glazes: Crazing!

This is crazing in a cone 10 reduction celadon glaze, on a porcelain. This is common because such glazes are often high in K2O/Na2O. Where do these oxides come from? Feldspars. Feldspars do produce brilliant glossy surfaces and they produce great colors but a glaze having 40% or more feldspar comes at a cost. Some body manufacturers in the North America produce whitewares and porcelains having extremely high quartz and ball clay contents, these will actually work with such glazes. However if you are using traditional bodies this problem can be solved by substituting some of the KNaO for lower expansion fluxes like MgO, SrO, CaO, Li2O (using glaze chemistry software).

Close-up of cone 10R celadon bubbles suspended in the glass. This is happening because this glaze lacks flux. In the upper half they are more evident (double thickness).

GR10-E Ravenscrag:Alberta Slip with 10% calcium carbonate

At cone 10R this produces an overly melted glaze. It also crazes.

Ravenscrag GR10-E celadon glaze

(50:50 Ravenscrag Slip:Alberta Slip) at cone 10R on porcelain (right) and stoneware (left).

GR10-E (50:50 Alberta Slip:Ravenscrag Slip) celadon at cone 10R on a white stoneware and a porcelain. The glaze is transparent, it has depth and varies in shade according to thickness, breaking to a much lighter shade on the edges of contours.

50:50 Alberta Slip:Ravenscrag Slip cone 10R celadon on iron stoneware, buff stone and porcelain.

The multitude of things iron oxide can do in reduction

Iron oxide is an amazing glaze addition in reduction. It produces celadons at low percentages, then progresses to a clear amber glass by 5%, then to an opaque brown at 7%, a tenmoku by 9% and finally metallic crystalline with increasingly large crystals past 13%. These samples were cooled naturally in a large reduction kiln, the crystallization mechanism would be much heavier if it were cooled more slowly.

An incredible glossy celadon recipe

The outside glaze on this cone 10R mug (made of Plainsman H550) is simply an Alberta Slip:Ravenscrag Slip 50:50 mix with 5% added Ferro Frit 3134 (the Alberta Slip is calcined). This produces a stunning celadon and great working and application properties. Inside glaze: Ravenscrag Slip 90%, talc 10% (a matte having an extra ordinary silky texture). Learn more at

Alberta Ravenscrag Cone 6 Brilliant Celadon

The magic of this recipe is the 5% extra frit, that makes the melt more fluid and brilliant and gives the glaze more transparency where it is thinner on edges and contours. The extra iron in the Plainsman P380 (right) intensifies the green glaze color (vs. Polar Ice on the left). The specks are cobalt oxide agglomerates that were made by slurrying cobalt oxide and bentonite, then crushing it to sizes large enough to make the specks.

Out Bound Links

  • (URLs) Celadon on Wikipedia
  • (Glossary) Crazing

    Crazing refers to small hairline cracks in glazed ...

By Tony Hansen

Feedback, Suggestions

Your email address


Your Name


Copyright 2003, 2008, All Rights Reserved