Digitalfire Ceramics Technical Articles

Logged in as Level 2 access: Logout


You should always be testing. But it is wasted without an audit trail. Document your lifetime of recipes, firing schedules, test results, pictures and much more in a private account at insight-live.com. It is the future, the next step after desktop Digitalfire Insight.

Watch the video, learn more or sign-up at http://insight-live.com.

Outdoor Weather Resistant Ceramics

Section: Clay Bodies, Subsection: General

Description

How can you be sure that the porosity of your fired ceramic ware is low enough to prevent freeze-thaw breakdown in the winter?

Article

Almost all fired stoneware and sculptural ceramic has some porosity. Porosity (also called absorption) is typically measured by weighing a sample, boiling it in water, weighing it again, and calculating the percentage increase in weight. This means that it will absorb water into the surface. In climates exposed to freezing temperatures water soaked ceramic experiences a buildup of pressures within the material as ice formation continues (water expands 9% as it freezes). If the ceramics cannot withstand this then scaling and cracking occur. Over a period of years the material can completely crumble. Concrete is susceptible to the same problem, this phenomenon is called Spalling .

Examples of clay porosity (these assume that the clays are fired at a temperature appropriate for each, underfiring will increase the porosity)

Red or brown burning stoneware clays   0.5-4%
White or buff burning stonewares  1-3%
Porcelains  0-0.5%
Warp resistant sculpture clays 5-10%
Vitreous sculpture clays 2-5%
Red terra-cotta clays  10-14%
White or buff talc clays  8-10%

Thus, if climatic conditions demand it, outdoor ceramic installations must be able to survive the stresses of freeze-thaw .

Since any ceramic with more than zero percent absorption demonstrates water penetration it would appear that it is theoretically susceptible to freeze-thaw damage. For practical purposes however, this is not altogether true. The brick industry considers any clay having under 5% porosity resistant to freeze/thaw failure (regardless of its closed and open porosity).

Closed and Open Porosity

More porous ceramic actually has both absorbency and porosity (technically they are not the same). A fired piece will naturally absorb a certain amount of water to fill the pores (open porosity ). However more porous clay matrixes also have capillary networks that normal soaking does not fill (closed porosity ). This auxiliary network allows fired ceramics to survive freeze-thaw because the expansion of the water has somewhere to go. The addition of finely dispersed cellulose fiber to a clay body could theoretically improve the capillary network.

It is possible to perform a simple test based on the principle that a sample of fired ceramic boiled in water will absorb more moisture than one that is simply soaked. This is because for the former, the entire network is filled, for the latter only the pores. This test compares the cold soaking absorption or open porosity (C) of a clay with its boiled absorption or closed porosity (B) . The structural ceramic industry requires a C/B result of less than 0.78 in order to pass CSA and ASTM specifications for outdoor use. If you are buying clay, your supplier should be able to measure and provide this information for you. They will want to know the temperature and rate-of-rise of your firing.

The C/B test procedure is defined in detail in the FORESIGHT software Test Information database. The procedure uses 10 mm thick by 25 mm wide by 120mm long fired test bars and defines a 24 hour soak and weigh, then a 5 hour boil and weigh.

Variables

Dry Weight - v1
The weight of a dry test specimen of the fired clay.
24hr Wet Weight - v2
The weight of a specimen that has been soaked for 24 hours in room temperature water and wiped clean of all surface water.
5hr Boiled Weight - v3
The weight of a specimen that has been soaked for 24 hours and boiled for 5 hours and wiped clean of all surface water.

Calculations

24hr Absorption - C
This is a calculation of the C value for this test, that is, the absorption of a clay sample if soaked for 24 hours in cold water.

C = (v2 - v1) / v1

5hr Boil Absorption - B
This is a calculation of the B value, that is, the absorption of a clay bar if soaked for 24 hours and boiled for 5 hours.

B = (v3 - v1) / v1

Saturation Coefficient - S
This is a calculation of the C/B value, the cold water absorption divided by the boiling water absorption.

S = C / B

The saturation coefficient S should be less than 0.78 in order to pass CSA and ASTM specs for outdoor use.

Sealing the Surface

Many products are available from building supply stores to seal the surface of concrete and masonry. These just soak in and harden to plug the pores. The use of these is standard practice in construction. So even if your fired ceramic does have a high porosity you can just seal all surfaces.

Links

These relate to the problem of spalling.


By Tony Hansen

In Bound Links




Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008 http://digitalfire.com, All Rights Reserved
Get a free INSIGHT software trial

INSIGHT is ceramic chemistry
calculation software that runs on
Windows, Mac and Linux and talks
to this web site. ()